Logical Implication as an Object and Proficiency in Proof by Mathematical Induction

VIRGINIA TECH.
Vladislav Kokushkin vladkok@vt.edu

Rachel Arnold rlongley@vt.edu

Anderson Norton norton3@vt.edu

Proof by mathematical induction is known to be conceptually

 difficult for undergraduate students. We present a model that may simulate the impact of logical implication on students mastering proof by induction. We combine Piaget's action-object theory of mathematical development with a psychological model of working memory. We analyzed three sets of written assessments from two Introduction to Proofs classes: after students learned about logical implication; before and after instruction on proof by induction. We examine the relationship between proficiency with mathematical induction and treating logical implication as an object within these two classes.
Research Question

What is the impact of holding logical implication as a mathematical object on students' responses to formal instruction on proof by induction?

Theoretical Framework

We apply Piagetian (1970) action-object theory to inductive implication $P(k) \rightarrow P(k+1)$.

Students' mastering proof by mathematical induction heavily relies on their encapsulation of logical implication as a mental object (Dubinsky, 1986).

An encapsulation of the components of logical implication as a single mental object is parallel to what cognitive psychologists call "chunking" (Pascual-Leone, 1970). Chunking offloads cognitive demands on working memory.

Our framework is built on the conjecture that the combination of cognitive units together with their logical structure not only offloads working memory, but also facilitates the development of new mathematical understanding (Norton \& Arnold, 2018).

Assessment	Tasks
	$\begin{array}{l}\text { Let } \mathrm{P} \text { and } \mathrm{Q} \text { be events that have some nonzero probability of } \\ \text { occurring, and suppose that the following two implications are } \\ \text { true: }\end{array}$
- If P and Q are mutually exclusive, their probabilities are not	
independent.	
- If the probabilities of P and Q are independent, the	
probability of P and Q is the product of the probability of P	
and the probability of Q	

Data Source

The participants are the students from two different classes of an Introduction to Proofs course, respectively taught by the second and the third authors. The course is a junior-level mathematics course designed to teach mathematics major students typical mathematical proof techniques.

$\begin{gathered} \mathbf{2}^{\text {nd }} \text { Author } \\ P=0.017062 \\ \chi^{2}=5.6902 \end{gathered}$		Post-MI Proficiency	
		Yes	No
$\begin{aligned} & \text { 을 } \\ & \text { O} \\ & \text { 흘 } \end{aligned}$	Object	7	4
	Action	1	8

$\begin{gathered} 3^{\text {rd }} \text { Author } \\ P=0.64716 \\ \chi^{2}=0.20952 \end{gathered}$		Post-MI Proficiency	
		Yes	No
	Object	4	7
	Action	3	8

Discussion

There is a relationship between Post-MI proficiency and treating LI as an object among the $2^{\text {nd }}$ author's students.

In contrast, there was no indication of such a relationship for the $3^{\text {rd }}$ author's students.

This incompatibility could be explained by the fact that the $2^{\text {nd }}$ author's class received formal instruction on quantification prior to instruction on induction, whereas the $3^{\text {rd }}$ author's class did not.

Dubinsky, E. (1986). Teaching mathematical induction: I. The Journal of Mathematical Behavior.
 Harel, G., \& Sowder, L. (2007). Toward a comprehensive perspective on proof, In F. Lester (Ed.), Second Handbook of Research on Mathematics

 Teaching and Learning, National Council of Teachers of Mathematics. Piaget, J. (1970). Structuralism (C. Maschler, Trans.).