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Abstract
Proof by mathematical induction poses a persistent challenge for students enrolled in 
proofs-based mathematics courses. Prior research indicates a number of related fac-
tors that contribute to the challenge, and suggests fruitful instructional approaches to 
support students in meeting that challenge. In particular, researchers have suggested 
quasi-induction as an intuitive approach to understanding the role of the inductive 
implication. However, a cognitive gap remains in transitioning to formal proof by 
induction. The gap includes the cognitive demand of quantification and the danger 
of inadvertently assuming what one is trying to prove. Informed by prior research, 
we designed instruction that builds from students’ conceptualizations of logical 
implication, utilizes quasi-induction, and introduces a novel set of tasks designed 
to bridge the gap that remains. We studied this research-based instructional design 
within two sections of an Introduction to Proofs course at a large public four-year 
university in the southeastern United States. Our findings, presented as themes, 
bring together extant literature and highlight nuances not previously reported, par-
ticularly regarding reasons students appear to conflate the assumption of the state-
ment to be proved with the assumption of the inductive hypothesis. For instance, 
quantification of the inductive implication and the inductive assumption require 
careful use of language, using terms that may seem ambiguous to students, outside 
of mathematical convention. We conclude with a discussion of links between the 
Principle of Universal Generalization and mathematical induction.
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Introduction

Prior research has identified several challenges experienced by students when learn-
ing proof by mathematical induction (MI). For example, students may overlook the 
role of the base case (Baker, 1996; Ernest, 1984; Ron & Dreyfus, 2004; Stylianides 
et al, 2007) or they may conflate the assumption of the inductive hypothesis with the 
assumption of proposition that is to be proved (Avital & Libeskind, 1978; Movshovitz-
Hadar, 1993).

We review prior research on such issues and other factors contributing to the 
challenge of mastering proof by MI. Then, we introduce research-based instruc-
tional approaches to support students in overcoming this challenge. Specifically, 
researchers suggest naïve induction, or quasi-induction (QI), as an intuitive, infor-
mal approach to understanding the role of the inductive implication (Avital & 
Libeskind,  1978; Harel,  2001). However, Harel (2001) identified a cognitive gap 
as students transition from QI to formal inductive proofs. To understand this gap, 
we studied two classrooms that leveraged research-based instructional approaches. 
Results of the study address the following research questions: 

1.	 Following research-based instruction on MI, what cognitive gap remains as stu-
dents formalize the proof technique?

2.	 How do students experience challenges identified in prior research on proof by 
MI? What reasoning do students demonstrate as they address this gap?

Intellectual Need and Challenges of Proof by MI

Students’ experience of mathematics is often very different from that of teachers. 
Dawkins and Weber (2017) assert that students sometimes experience learning 
difficulties because they are encouraged to adopt mathematicians’ expectations in 
the production of mathematical knowledge without personally assigning the same 
importance. This discrepancy is closely tied to students’ intellectual need for formal 
mathematics.

According to Harel (2008), intellectual need is a learner’s subjective need to 
address a problem by learning something new. Cognitive challenges naturally arise 
in students’ attempted production of new knowledge. In this section, we summarize 
prior research on the cognitive challenges that students experience in learning proof 
by MI.

Proof by MI poses notoriously persistent challenges for college students (Baker, 
1996; Michaelson; 2008; Stylianides et  al., 2007). Researchers have found that, 
oftentimes, learners can mechanically generate an inductive proof without develop-
ing a robust understanding of its methodology (Knuth, 2002). Movshovitz-Hadar 
(1993) studied 24 pre-service secondary mathematics students enrolled in a prob-
lem-solving course at an Israeli university. Findings suggested that instruction led to 
procedural knowledge for completing inductive proofs without an underlying logical 
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justification. Therefore, when students faced situations of cognitive conflict, their 
confidence was shaken. One participant noted, “I never really believed in [MI] as a 
method of proving conjectures, although I know quite well how to do it, technically 
I mean” (p. 262).

Researchers have identified several factors that complicate proof by MI. These 
factors include the role of the base case (Baker, 1996; Ernest, 1984; Ron & Dreyfus, 
2004; Stylianides et al., 2007), domain-specific knowledge particular to the proposi-
tion (Baker, 1996; Davis et al., 2009; Dubinsky, 1991), understanding logical impli-
cation as an invariant relationship (Dubinsky, 1986, 1991; Norton & Arnold, 2017), 
and the importance of (hidden) quantifiers and use of related language (Ernest, 
1984; Movshovitz-Hadar, 1993).

Regarding the base case, Ernest (1984) noted students often treat its verification 
as a formality without understanding its essential role in MI. This treatment aligns 
with many students’ and teachers’ procedural treatment of MI as a list of steps to 
be checked (Stylianides et al, 2007). When interviewing teachers, Ron and Dreyfus 
(2004) found that teachers sometimes treated the base case as an example of the con-
jecture rather than the starting point for MI. Dubinsky (1986, 1990) noted one of the 
greatest difficulties for students in mastering proof by MI stems from their under-
standing of the base case as a formal step without real importance. Harel (2001) 
found similar issues within learners’ perceptions of the base case: “when pressed, 
some students admit that they view the step of verifying P(1) as non-essential, and 
one is required to perform it just to satisfy the rule stated by the teacher” (p. 14).

Regarding domain-specific knowledge, researchers have noted the mathematical 
content of the proposition itself may compound students’ struggles with MI. This is 
especially true as students attempt to prove the inductive implication. Not only must 
students maintain their understanding of the implication’s logical role in MI, they 
must also wrestle with the mathematical relationship it describes. Davis et al. (2009) 
documented pre-service teachers’ struggles as they attempted to prove an induc-
tive implication involving powers of 3. One pre-service teacher noted, “you need to 
know a lot of background algebra knowledge and different mathematics knowledge, 
like 3n+1 is 3n times 3” (p. 6).

The remaining two factors – logical implication as an invariant relationship and 
the role of quantification – play a more prominent role in our study. We elaborate on 
research related to these factors below.

The Inductive Implication as an Invariant Relationship

The inductive implication P(k) → P(k + 1) can be treated in two ways: (1) as an 
inductive step, P(k + 1) , from the inductive assumption, P(k); or, (2) as an invariant 
relationship between P(k) and P(k + 1) for any k (Dubinsky, 1986). This distinction 
parallels one noted by Knuth et al. (2006) regarding the equal sign as an operator or 
as an invariant relationship. Dubinsky (1991) hypothesized that success in proof by 
MI hinges on understanding logical implication as an invariant relationship – “the 
encapsulation of the process of implication” (p. 111; see also Dubinsky, 1986).
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In his conceptual analysis of proof by MI, Ernest (1984) distinguished two 
aspects of the inductive implication that might present challenges for students: (1) 
understanding implication as a binary function wherein P(k) is transformed into 
P(k+1); (2) proving the implication (deriving the inductive step from the inductive 
assumption). The first relates closely to Dubinsky’s (1991) concern about the treat-
ment of logical implication as an invariant relationship. The second depends more 
on the particular context of the conjecture that is to be proved. Empirical studies 
have held up both aspects of conceptualizing logical implication as critical to under-
standing MI.

One such study reported on the “knowledge fragility” of pre-service teachers 
(Movshovitz-Hadar, 1993). Although many students demonstrated confidence and 
procedural knowledge for completing proofs by MI, they struggled to conceptual-
ize the method. Movshovitz-Hadar noted students apparently conflated the inductive 
assumption with the conjecture they were proving, as evidenced by comments like 
“in [MI] we always assume what we need to prove, then we prove it” (p. 262). Stu-
dents were not treating the inductive implication as a single logical component that 
must be validated. Rather, they were focused on the inductive assumption as its own 
entity whose validity was taken for granted.

Palla et  al. (2012) identified similar challenges among high school students in 
Greece. Surveys from 213 eleventh-grade students demonstrated they held incom-
plete definitions of MI, often including what the researchers refer to as “circular 
reasoning” in their description of the inductive implication. This reasoning often 
resulted from students’ step-by-step procedure that separated the inductive assump-
tion from the inductive step, without the holistic logical structure of the inductive 
implication. One student provided the following definition of MI:

1st step: I examine if it holds for the smallest possible value of n.
2nd step: I claim that the proposition P(n) is valid.
3rd step: I substitute n + 1 for n and if I will show that the proposition P(n + 1) 
is valid the proposition P(n) holds ∀n ∈ ℕ.
(p. 1033)

In separating the inductive assumption into its own step, the student inadvert-
ently assumed the conjecture itself. Follow-up interviews with 18 students indicated 
they struggled to derive the inductive step from the inductive assumption, echo-
ing previous findings from other studies (e.g., Avital & Libeskind, 1978; Fischbein 
& Engel, 1989). Even when students explicitly referred to the domino metaphor 
described below, it offered little help for their completion of a proof by MI. Both 
findings– students’ use of circular reasoning and their struggles to derive the induc-
tive step– point to a disconnect between the inductive assumption and the inductive 
step that metaphors for recursion do not resolve.

Ron and Dreyfus (2004) demonstrated the limitations of metaphors for recursion 
through interviews with six Israeli high school teachers. Consider the domino meta-
phor: “Dominoes are arranged in such a way that if we push the first one it falls 
and causes a chain reaction– every domino tile knocks down the next one and as a 
consequence all the dominoes in the row fall” (Ron & Dreyfus, 2004, p. 115). Five 
of the six teachers used this metaphor in instruction on MI. However, while teachers 
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recognized the recursion in the metaphor, they did not exploit its connection to the 
role of the inductive assumption in proving the inductive implication.

Quantification

Quantification is an essential component of MI (Ernest, 1984) as proving the uni-
versally quantified inductive implication requires the Principle of Universal Gener-
alization (PUG; Copi, 1954). PUG justifies that one proves a statement of the form 
“ ∀x ∈ U

x
, P(x) ” by considering an arbitrary c ∈ U

x
 and demonstrating P(c) is true. 

In MI, we prove the implication P(n) → P(n + 1) is true ∀n ∈ ℕ by fixing an arbi-
trary k, assuming P(k) is true, and demonstrating P(k + 1) must also be true.

Movshovitz-Hadar (1993) reported on students’ difficulty with the quantification 
of k in proving the inductive implication. On the one hand, P(n) → P(n + 1) must be 
proved for all n– a universal quantifier, which establishes n as variable. On the other, 
proving the implication requires assuming P(n) for some fixed but arbitrary value 
n = k . Ignoring the former quantification leads to an incomplete argument. Ignoring 
the latter quantification leads to circular reasoning (Palla et al., 2012).

The challenge of quantification in proof by MI is exacerbated when the quan-
tifiers are hidden. Shipman (2016) discussed this additional challenge, noting that 
oftentimes students’ mistreatment of quantifiers leads to the erroneous proof of a 
“for all” statement by example. Within the inductive implication, both P(n) and 
P(n + 1) are open statements that have no truth value until n is quantified. When 
we write “ P(n) → P(n + 1) ” we implicitly mean “for all n ≥ 1 , P(n) → P(n + 1) .” 
Durand-Guerrier (2003) discussed the difficulties of working with implication when 
quantification is left implicit. Ernst (1984) recommends that teachers make this (hid-
den) quantification explicit so that students can attend to its significance.

Lew and Mejía-Ramos (2019) studied what mathematicians and undergraduate 
students perceived as linguistic conventions in proof writing. They reported lev-
els of variation in how mathematicians and students identify the issues with math-
ematical language. One of three themes was that students may not fully understand 
the nuances pertaining to the introduction of mathematical objects. These nuances 
include the usage of an over- or under-quantified variable and the failure to instan-
tiate universally quantified variables. When proving the inductive implication via 
PUG, one introduces a new mathematical object: the variable k. In the inductive 
assumption, students may introduce k as “for all k”, “for any k”, “[fixed but] arbi-
trary k” or “any arbitrary k”. Their choice of language may or may not indicate 
ambiguity in their thinking.

Dawkins and Roh (2020a, b) distinguish the role and value of a quantified vari-
able in mastering proof comprehension. The role/value duality may be seen in epsi-
lon-delta proofs of convergence wherein epsilon sometimes plays the role of a fixed 
but arbitrary value and elsewhere serves as an error bound. Likewise, in proof by 
MI, students make an inductive assumption; they assume that the proposition holds 
for a fixed but arbitrary k (P(k) is true). Here, variables n and k play similar roles in 
referring to the argument of the proposition. However, the values of n and k differ in 
the way that the two variables should be quantified.
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Instruction on Proof by MI

Traditionally, instructors have introduced proof by MI as a three-step procedure: 
(i) show P(1) (base case), (ii) assume P(n) (inductive assumption), (iii) deduce 
P(n + 1) from P(n) (inductive step; Tsay et  al., 2009). In 2008, Cusi and Malara 
proposed an alternative instructional approach that fosters students? understanding 
of proof by MI: (i) a thorough discussion of logical implication, (ii) introduction 
to the principle of MI through quasi-induction (QI) and the use of metaphors, and 
(iii) presenting examples of incorrect proofs to stress the importance of the base 
case. They applied this approach to a sequence of teaching experiments with 44 
pre- and in-service middle school teachers in Italy, and results support claims of its 
effectiveness.

QI as an Instructional Approach

Avital and Libeskind (1978) suggested “naïve induction” as an instructional 
approach in which students demonstrate specific cases of the inductive implication. 
By looking across several such cases, students might reflect on the structure of the 
implication and realize that the relationship between P(n) and P(n + 1) does not 
depend on the particular value of n, nor the truth value of P(n). Harel (2001) elabo-
rated on the instructional approach and labeled it as  QI. A student employing QI 
shows that P(1) is true and that P(1) → P(2) , P(2) → P(3) , P(3) → P(4) , and so on. 
This leads to the plausible conclusion that eventually P(n − 1) → P(n).

For example, consider the statement P(n): a 2n × 2n grid of squares with exactly 
one square removed can be tiled with L-shaped tiles. A student utilizing QI first 
demonstrates any 2 × 2 grid with one square removed can be tiled by exactly one 
L-tile (see Fig. 1).

Next, they show how a 22 × 22 grid with one square removed may be tiled with 
L-tiles by dividing the grid into four quadrants and reducing each quadrant to the 
2 × 2 case (as illustrated in Fig.  2). Thus, P(1) → P(2) . Then, the student might 
show P(2) → P(3) by observing a 23 × 23 grid can be divided into quadrants of size 
22 × 22 and applying an argument analogous to that of P(1) → P(2) . This process 
exploits the inductive pattern.

Fig. 1   The base case of the 
L-tiles example
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Metaphors, like the aforementioned domino metaphor, highlight the recursion 
inherent in MI, but research indicates that students as young as five years old dem-
onstrate the ability to reason recursively (Smith, 2002). QI not only leverages this 
recursive reasoning, it draws students’ attention to the role of the inductive assump-
tion in proving the inductive implication.

The Gap that Remains

While prior research has validated QI as accessible to students and beneficial for 
their understanding of MI (Harel, 2001; Cusi & Malara, 2008), the conceptual 
jump from QI to formal MI is larger than it may seem. Harel asserts that this 
cognitive gap is indeed substantial, referring to formal proof by MI as an abstrac-
tion of QI. In particular, he characterizes this gap as a difference in how students 
perceive the inference P(n − 1) → P(n) . Namely, in QI, learners view it as a 
last step in a chain of inferences P(1) → P(2) , P(2) → P(3) , … , P(n − 1) → P(n) 
that connects P(1) with P(n). In contrast, formal proof by MI requires treating 
P(n − 1) → P(n) as an invariant relationship across the entire chain.

Theoretical Framework

Our theoretical framework brings together prior research on students’ cognitive 
challenges in proof by MI and the efficacy of QI as an instructional approach. We 
expand on Harel’s explanation of the gap between QI and formal MI to include the 
tension between teachers’ instructional goals and the students’ experiences of the 
cognitive challenges that emerge from instructional interactions. In particular, our 
classroom study illuminates nuances in students’ struggles as they begin to bridge 
the gap (see Fig. 3).

Our framework draws on action-object theory, which derives from Piaget’s (1970) 
genetic epistemology, in which mathematics is understood as a product of psychol-
ogy: mathematical objects arise as coordinations of mental actions through a process 
called reflective abstraction. In the context of MI, Dubinsky (1986) hypothesized 
that students’ success depended on their ability to conceptualize logical implication 
as a single mathematical object, rather than an action that transforms the hypothesis 
into the conclusion. This aligns with Harel’s (2001) assertion that the gap between 
QI and formal proof depends on students’ perception of the inductive implication 

Fig. 2   P(1) → P(2)
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as an invariant relationship. While QI may be accessible to all students because it 
builds on students’ understanding of logical implication as an action, the gap may be 
wider for those students who do not hold logical implication as a single object.

We employed this action-object distinction to explain difficulties inherent in 
proof by MI (Arnold & Norton, 2017; Norton & Arnold 2017, 2019). To better 
assess students’ understanding of the underlying components of MI, we designed 
tasks (see Table 1) to be independent of mathematical content. The tasks were first 
used in Arnold & Norton (2017) and Norton & Arnold (2017) in clinical interviews 
with students from an Introduction to Proofs course. Both studies support findings 
from prior literature that treatment of logical implication is a major mediator in stu-
dents’ understandings of proof by MI (Ernest, 1984; Dubinsky, 1986). In Norton 
& Arnold (2017), we found that differences in understanding of logical implication 
may explain students’ struggles with hidden quantifiers. In Norton & Arnold (2017), 
we report that treatment of logical implication as a single object might allow learn-
ers to re-invent a QI proof and avoid the pitfall of conflating the proposition with the 
inductive assumption. We note that these tasks were further refined in a follow-up 
study (Norton & Arnold, 2019). The results of this second study indicated that hold-
ing logical implication as a single mathematical object may enable students to attend 
to other components of proof by MI.

Methods

In Spring 2018, Norton and Arnold each taught a section of Introduction to Proofs at 
a large land grant university in the southeastern United States. Here, we describe the 
instruction in each class and our methods for collecting and analyzing data from the 
subsequent classroom interactions.

Fig. 3   The cognitive gap 
between QI and formal MI

Table 1   Sample novel task

Problem Statement: Suppose P(n) is a statement about a positive integer n, and we want to prove the 
claim that P(n) is true for all positive integers n. For each scenario, decide whether the given informa-
tion is enough to prove P(n) for all positive integers n.

Scenario Given Information
A P(1) is true; for all integers k ≥ 1 , P(k) is true.
B P(1) is true; there is an integer k ≥ 1 such that P(k) is true.
C P(1) is true; there is an integer k ≥ 1 such that P(k) implies P(k + 1).
D P(1) is true; for all integers k ≥ 1 , P(k) implies P(k + 1).
E For all integers k ≥ 1 , P(k) implies P(k + 1).
F For all integers k ≥ 1 , P(k) and P(k + 1) are true.
G P(1) is true; for all integers k ≥ 2 , P(k) implies P(k + 1).
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Research‑based Instruction on MI

The instructors’ approaches were similar to that prescribed by Cusi and Malara 
(2008), however they relied less on metaphor to elucidate the components of for-
mal MI. Instead, the instructors used novel tasks developed in their prior research 
(Arnold & Norton, 2017), such as the problem in Table 1 which refers to an unspeci-
fied proposition P(n). Norton used the scenarios in Table  1 to generate class dis-
cussion; Arnold used them within an informal assessment. Their tasks encouraged 
the use of QI, introduced components of formal MI, and attempted to elucidate 
the intellectual need for this proof technique. Within this approach, each instructor 
promoted the inductive implication as an invariant relationship between the induc-
tive assumption and the inductive step (rather than treating them as separate com-
ponents), and they explicitly addressed issues of quantification. Ultimately, similar 
themes emerged in both classrooms.

Norton’s Class

Norton began each class with a “starter problem” displayed on the projector screen. 
Beginning week one (of a 15-week semester), some starter problems involved prov-
ing implications that took the form of QI, though they were not introduced as such. 
For example, in week 3, the starter problem was as follows: “If the sum of the first 
100 natural numbers is (100×101)/2, then the sum of the first 101 natural numbers is 
(101×102)/2.”

Norton explicitly introduced MI during the first class of week six. The starter 
problem prompted students to generate ideas for proving 5 divides 8n − 3n . Most of 
class was devoted to discussing the components of MI (see Table 1). For example, 
when considering Scenario C, Norton asked, “what integers do we know it works 
for?” Student responses included “1”, “1 and 2,” and “1 and some k.” This exchange 
facilitated discussion about quantification of the implication and potential confla-
tions between the truth of the inductive assumption and the truth of the inductive 
implication.

The next class, Norton introduced five QI statements, like the following: “If 3 
lines in the plane (none parallel and with no three intersecting at a point) form 7 
regions, then 4 such lines form 11 regions.” Students sat at five tables in the class-
room, and each table was assigned one statement to prove and present to the rest of 
the class on a whiteboard. At the end of class, three students were assigned three 
conjectures to prove by induction. The three students presented those proofs on the 
third and final day of MI instruction (the first class of week seven). Much of the 
classroom discussion that day focused on the meaning of various quantifiers and 
how they might be used in MI.

Arnold’s Class

Arnold introduced logical implication in the first week of class. Then, unlike Norton, 
Arnold gave formal instruction on quantifiers before returning to proving implica-
tions. Following prior research (Harel, 2001; Cusi & Malara, 2008), she introduced 
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MI (during week 9) by first engaging students in QI without mentioning the formal 
proof technique. Students were prompted to work in groups on the aforementioned 
L-tiles task by showing specific cases: P(1), P(1) → P(2) , and P(2) → P(3) . Then, 
together as a class, students outlined the approach to each case.

On day two, Arnold returned to the L-tiles task, prompting students to identify 
the key components necessary for generalizing their argument to an “algorithm” for 
proving the claim for an arbitrary n. She led students to the general inductive impli-
cation, introducing the notation P(k) → P(k + 1) and asking how it should be quanti-
fied. After formally stating the principle of MI, Arnold gave the metaphor of “climb-
ing a staircase” in justifying the label “inductive step.” Then, students were given a 
proof and asked to determine the claim it was proving (“for all k ∈ ℤ

+ , if k = k + 1 
then k + 1 = k + 2”). This task emphasized the role of the base case. Finally, Arnold 
returned to the quantification of P(k) → P(k + 1) , asking students whether k should 
begin at 1 or 2 to connect the base case with the implication.

On day three, Arnold asked students to help develop a general template for a 
proof by MI. This prompted a discussion of the language necessary for introduc-
ing k in the inductive assumption. Students spent the remainder of class working in 
groups to formally prove claims such as “for all n ≥ 0 , 3 ∣

(

22n − 1
)

.”

Data Collection

The two classes met on different days in the same room. There were five circular 
tables in the room, each with about five students who regularly work together during 
class. The room was equipped with multiple cameras and microphones, controlled 
from an adjacent room, to capture audio-video from the whole classroom. We 
recorded each class during the three-day instruction on MI. Norton’s class meetings 
were held on February 20, 22, and 27 for 75 minutes each. Arnold’s class meetings 
were held on March 21, 23, and 26 for 50 minutes each. Recordings captured the 
instructors’ activity, overhead projections (e.g., notes and PowerPoint slides), and 
students’ interactions.

Data Analysis

Using existing literature, we generated an initial list of codes for aspects of MI where 
students might struggle (see Table 2). We used these codes in retrospective analysis 
of classroom data. The research team met weekly from Summer 2018 through Fall 
2019 to review video recordings and code salient segments of classroom interaction. 
Segments of video were deemed salient if they included student-student or student-
teacher interactions in which MI was discussed. Each segment was assigned at least 
one code and documented in an Excel spreadsheet. We used the labeling scheme 
“[A1 2:34]” to designate data from teacher A, class session 1, timestamp 2:34 
(minutes:seconds). For example, [A2 30:30] was taken from Arnold’s second class 
on MI, starting at 30 minutes and 30 seconds. The corresponding line used Codes G, 
C, and F, and included the following description: “Teacher guiding students to gen-
eral quantifying, formalizing induction; student 4 suggests for all k ≥ 1… possibly 
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conflating cases with implication, but bothered by it and self-corrects.” When no 
existing code fit a segment of data, we introduced a new code and then reviewed all 
prior videos to include the additional code, wherever applicable.

During a second phase of analysis, we organized codes around the cognitive gap. 
Each researcher independently reviewed instances of the gap code (G) and its con-
nection to other codes. This analysis was guided by the overarching question, “how 
is each code related to the gap code, as evidenced by the line-by-line coding within 
teaching sessions?” To answer this question, we identified codes present in class-
room interactions containing a segment coded with G.

We shared our notes in group discussions to identify the connections between 
codes that we saw. These connections suggested themes and instances of those 
themes. A byproduct of our analysis was the emergence of the codes L and N. For 
example, when G and Q appeared within the same classroom interaction, discussion 
often centered around selecting appropriate language for communicating the intended 
logic. Thus, the L code emerged as an extension of the G-Q connection. Having 
determined five overarching themes, we reviewed pertinent video recordings to iden-
tify representative examples, which are used below to elaborate on each theme.

Resulting Themes

QI provides opportunities for students to engage in inductive arguments (Avital & 
Libeskind, 1978), but a gap remains as instructors attempt to support students’ tran-
sition to formal MI (Harel, 2001). Instruction in both researchers’ classrooms lever-
aged QI, but in different ways. Here, we describe the themes that arose from coding 
classroom interactions.

Prior literature has identified three main epistemological obstacles to produc-
tive teacher-student interactions regarding MI (e.g., Baker, 1996; Ernest, 1984;  
Movshovitz-Hadar, 1993): (1)  a possible conflation between the proposition and 
inductive assumption (C); (2) uncertainty about the role of the base case (B); and, 
(3) paucity of domain-specific knowledge (D). We found evidence to support the 
challenging roles of the base case (B) and domain knowledge (D). We acknowledge 
that students rely on domain-specific knowledge to generalize QI arguments and that 
students must coordinate the base case with the inductive implication to complete an 
inductive argument. However, our analysis of the interactions centering on the gap 
(G) suggested the apparent conflation (C) documented in prior literature might be 
better understood via the connections between G and other codes.

These connections suggested the graph in Fig. 4, which illustrates an expansion 
of the conflation code (C) into a chain of four other codes. Nodes in the graph rep-
resent various codes identified in Table 2. Edges between nodes represent themes 
as connections between codes. We discuss each of these themes, edge-by-edge, in 
order of edge number.
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Theme 1: Intellectual Need for Formal MI

Harel (2008) described intellectual need as “a behavior that manifests itself inter-
nally with learners when they encounter an intrinsic problem--a problem they under-
stand and appreciate” (p. 285). In our study, that behavior arose from the lack of 
generality in QI arguments and the need for the inductive implication to continue 
indefinitely. Students sometimes used circular hand gestures to describe how the 
same implication might be used again and again.

Consider the following episode from Norton’s first class on MI. The episode 
began as Norton transitioned from Scenario C to Scenario D (see Table 1): “P(1) 
is true; for all integers k ≥ 1 , P(k) implies P(k + 1) .” Norton is denoted N and his 
students are denoted X

i
.

N: So, now I know P(1) is true. The only difference is here–one little change–
‘there exists’ changed to ‘for all.’ Now I know P(1) is true, and I know for 
all integers k ≥ 1 , the truth of P(k) implies the truth of k + 1 . Now what do I 
know? What integers is the proposition true for?
Students: All.
N: What?!
Students: All those positive…
N: All I see is 1!
X1 : But it works for all integers.
X2 : When k is 1 and we know 1 works then P(1 + 1) works, so 2 works.
N: Ok, 1 works because it’s working for all k ≥ 1 , so it works for 1. So working 
for 1 implies it works for 2. Ok, great.
X2 : Then you can plug 2 back in for k and the logic repeats itself.
N: This allows me to put 2 in because it says for all integers. All right, 2 is 
greater than or equal to 1, so this applies, and I already got P(2), so P(3). 
Great, now I’m at 3. This is gonna take a long time…
Students: Yeaaah [laughing]
N: How many people think this is going to work for all integers?

Fig. 4   Graph of connected 
codes
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[All the students raise their hands.]
Student: Positive.
N: Positive integers… How do you know that there’s not some integer wayyyy 
out there where this doesn’t work?
X3 : Because this is for all.
X1 : …integers k ≥ 1.
N: So there’s a lot of conjectures y’all’ve been struggling to prove that kind 
of go on forever. Like that Fibonacci one where every third element of the 
Fibonacci sequence is even. And you start going and going and going, and 
you can’t go on forever. This [points to inductive implication] goes on forever 
for you. This is the engine that’s doing all the work for you. So that’s what we 
want to try to do is try to apply this engine.
[N1 37:00-38:35]

Norton used the students’ reasoning to highlight how the inductive implication 
would satisfy the intellectual need for “an engine” that would repeatedly apply the 
inductive argument. The students first moved from the truth of P(1) to the truth of 
P(2) using the inductive implication applied to the case where k = 1 . Then, they 
argued that “the logic repeat[ed] itself” since the implication was true for all k.

A similar discussion took place in Arnold’s class when students began to general-
ize their QI arguments for the L-tiles task. However, their arguments moved in the 
opposite direction, descending from an arbitrary value of n down to the base case. 
Arnold attempted to induce the intellectual need for generalizing QI arguments by 
asking students to consider the 500th case, its dependence on the 499th case, and in 
turn, its dependence on the 498th case. Along the way, she emphasized the impor-
tance for the base case, to which we return in a later section.

A: 498? To prove the 498th case what would I need?
Students: 497.
A: The 497th case, and to prove that case, what would I need?
Students: 496.
A: The 496th case, and it all comes down to knowing what is true?
Students: 1.
[A2 11:30]

By emphasizing the extensive effort that would be necessary to prove P(n) via QI 
for large values of n, Arnold motivated her students to generalize their arguments to 
formally prove the inductive implication. Arnold is denoted A and her students are 
denoted Y

i
.

Y1 : You need to know that each case for n > 1 can be broken down into four 
cases of n − 1 if that makes sense.
A: So, for our specific problem, we would need to show how the case that we 
want to show is true can be broken down into the previous case?
Y1 : Yeah.
[A2 17:47-18:26]
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At times, students struggled to transform particular QI arguments into a general 
implication, which underscored the intellectual need for formal MI. Student X4 in 
Norton’s class presented a QI argument about the sum of odd numbers but did not 
know how to generalize it [N2 1:07:00]. He had proven that if the sum of the first six 
odd numbers is 62 , then the sum of the first seven odd numbers would be 72 . How-
ever, he did this computationally, simply adding the seventh odd number (13) to 36 
( 62 ) to get 49 ( 72 ), and it wasn’t clear to him how the argument would generalize.

X4 : This is kind of not complicated for some reason.
N: Yeah it’s not complicated until you start thinking how would you generalize 
this.
X4 : Yeah.
N: Like, did you just get lucky that 13 plus 36 gives you the next square, or is 
there something particular about how this 13 was constructed, 13 minus–you 
know, the 13 minus 1–that would make it work for the kth, you know, when 
you generalize to k? So I think this one’s easy, but it’s gonna get complicated 
when you generalize to k, and figuring out, ok, what is it about this 2 times k 
plus 1 minus 1 that’s gonna lead us to the next perfect square. That’s the work 
to do.
X4 : Yeah unless you’re flat out told that the two– that the nth odd number– is 
2n − 1 . Then it becomes easy.
[N2 1:07:30-1:08:23]

When students could not see the general in the particular, there was a need to gen-
erate a universal argument for the inductive implication. In the present case, this 
amounted to deriving 2k + 1 as the difference of consecutive perfect squares, 
(k + 1)2 − k2 . At other times, students provided arguments that circumvented the 
need for formal MI. For instance, a student in Norton’s class suggested a method 
of descent (cf., Ernest, 1982) for proving the Fundamental Theorem of Arithmetic 
(FTA) that did not fit formal MI.

The FTA states that every integer greater than 1 is either prime or can be uniquely 
represented as the product of primes. Formal proofs of the theorem often rely on 
strong MI (Dawson, 2006), but the student suggested that if a given number is not 
prime, then it is the product of two factors greater than or equal to 2. Thus, each 
of those factors is no bigger than half of the original number. This repeated “halv-
ing” would eventually have to terminate so that the original number would be fac-
tored into a product of primes. When the teacher tried to redirect the class toward an 
inductive approach, the student protested that their approach was indeed inductive.

N: I think that could work as a rigorous argument but that gets us into looking 
at limits and such. I think we can do this [gestures to board with proof idea], 
but I think we can come up with a shorter, cleaner proof that relies on induc-
tion instead. So that’s not to discount this one [proof idea]. It’s just (1) think 
about how induction is doing work for us, and (2), practice induction in here…
X2 : I feel like we are doing induction with this.
[N3: 21:28-22:45]
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The student was employing recursive reasoning. The difficulty that the teacher expe-
rienced in highlighting this distinction was that the student’s argument depended on 
a limiting process that did not terminate in an explicitly identified base case.

Theme 2: Quantifying Components of the Inductive Implication

Even when students have an intellectual need for formal MI, they may still strug-
gle to bridge the gap between QI and formal MI. Bridging this gap entails careful 
quantification of the inductive implication (Ernest, 1984). Moreover, in proving the 
inductive implication, the inductive assumption of P(k) requires a shift in the lan-
guage students use to quantify k; it requires universal instantiation of k as a fixed but 
arbitrary integer.

The issue of quantification arose quickly in both classes despite differing instruc-
tional approaches. Arnold had provided formal instruction on existential (e.g., “there 
exists”) and universal (e.g., “for all”) quantifiers earlier in the semester. Norton, 
however, had not formally introduced these quantifiers prior to classroom discussion 
on MI. In his class, the issue arose during the first MI teaching session, as students 
considered the scenarios from Table 1, especially in contrasting the use of the exis-
tential quantifier in Scenario C with the use of the universal quantifier in Scenario 
D. Students seemed to readily understand the necessity for universally quantifying 
the inductive implication, but proving it was a greater challenge.

Following the discussion of the scenarios and related components of MI, stu-
dents were asked to work in groups at their tables to prove the following claim using 
MI: “For all n ≥ 1 , 2 + 22 + 23 +⋯ + 2n = 2n+1 − 2 .” Each group quickly checked 
the base case ( n = 1 ) and then focused on proving the inductive implication: for all 
n ≥ 1 , if the equation works for the nth case, then it also works for the (n + 1) st case. 
In proving this universally quantified implication, each group seemed to face a com-
mon difficulty. Consider the proof shown in Fig. 5, as shared by one of the groups on 
a whiteboard.

X5 : We assume this “if” part [pointing to the assumption of the inductive 
hypothesis, at the top of Fig. 5], and then ...

Fig. 5   Presentation of the induc-
tive proof by first group
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N: Let me ask you a question. What gave you the right to assume the “if” 
part?
X5 : We don’t know if this is right or wrong, but we’re saying if this is right, 
then we can get to that part [pointing to the inductive step].
N: You are not assuming the theorem. You are assuming the if part of your 
implication.
X5 : [laughing] Which looks a lot like the theorem.
[N1 1:03:00]

Note that this group did not explicitly quantify the inductive assumption when 
writing “we assume it works for 2n .” Furthermore, they used n throughout their 
proof, rather than introducing a new variable, k, when quantifying the implica-
tion. Figure 6 illustrates an attempted proof by a second group. This group did 
introduce k and attempted to quantify it.

Following the verification of the base case ( n = 1 ), the proof contin-
ued with an assumption: “assume the equation holds for all k ≥ 1 such that 
2 + 22 +⋯ + 2k = 2k+1 − 2 .” It might appear that the students had assumed what 
they were trying to prove, but they saw the situation differently. As one repre-
sentative from the group explained, “we wrote it like that, but we knew ...I guess, 
we didn’t write the part that said, ‘here is the if-then statement’ because what you 
do immediately after that is you say ‘assume that it’s true.” In saying this, the stu-
dent seemed to think the issue was that he had not explicitly written what he was 
about to prove: the universally quantified implication,

(∀k ≥ 1)

[

P(k) → P(k + 1)

]

.

Fig. 6   Presentation of inductive 
proof by second group
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However, Norton was more concerned that his group had universally quantified the 
inductive assumption,

On one hand, the group used “for all” language in quantifying k in P(k). On the 
other, they also introduced “such that” language (typically associated with existen-
tially quantified statements) before stating P(k) ∶ }}2 + 22 +⋯ + 2k = 2k+1 − 2.�� 
Although Norton did not probe this use of “such that,” students might have used 
that language to indicate that, in making their assumption, they were only concerned 
with values of k for which they knew the proposition to be true. The same student 
( X5 ) used the phrase similarly in a subsequent episode.

In Arnold’s class, the issue arose when she asked students what they would 
need to know to complete a proof by MI, building from QI arguments, such as 
P(2) → P(3) . She had written the general implication P(k) → P(k + 1) and asked 
how she should quantify k.

A: Someone tell me a precise way that I want to quantify.
Y2 : If P(1) is true.
A: Well if P(1) is true, then P(2) is true. If P(2) is true then P(3) is true. But, 
how do I say that all at once so that when I go to actually write the proof, I 
don’t have to do all those cases?
Y3 : For all k ≥ 1 , k + 1 is true.
A: Good [says and writes “for all k ≥ 1”]. Say the rest.
Y3 : k + 1 is [brief pause] true.
A: Tell me the whole piece that I need to know, though.
Y3 : Oh, if P(k) is true, then k + 1 is true.
A: Yes. [continues writing “ P(k) → P(k + 1) ”] If I said instead, because I 
know you intended to say what I wrote, but if I said this [writes “for all k ≥ 1 , 
P(k + 1) is true”] ‘for all k ≥ 1 , P(k + 1) is true.’ Let’s say I was given that fact, 
and I also knew P(1) was true. Would my claim be true, for all my positive 
integers?
Students: [pause, then a few students, including Y3 , respond “yes”]
A: Yeah, it would be, wouldn’t it? I know that P(1) is true [gesturing toward 
the board], and then they are saying, for every k ≥ 1 , P(k + 1) is true. So, that’s 
like saying P(2) would be my first value; P(3), P(4). This would certainly tell 
me that the claim is true for all things, but that is not the structure of our argu-
ment. Our argument depends on the previous case, so our argument comes 
from an implication.
[A2 30:10]

Arnold was asking students to quantify the inductive implication, and student Y3 
literally quantified the inductive step. However, she interpreted the students’ literal 
response as an abbreviated attempt to quantify the inductive implication. Although 
we cannot know for sure whether the student made a distinction between the 

[

(∀k ≥ 1)P(k)

]

→ P(k + 1).
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inductive step and the inductive implication, Arnold’s interpretation seemed to reso-
nate with him, as indicated by him nodding his head in agreement.

Later in the episode, Arnold asked the class how they would prove a universally 
quantified implication, and like the second group in Norton’s class, they began with 
the language “for all.”

A: So, for us, we’re proving a “for all.” We’re going to say for all k in ℤ , and 
that if P(k) is true then P(k + 1) is true. So let’s think about how we might 
write that out. How would I introduce the fact that this is universally quanti-
fied? [Silence] If I translated that into a sentence, I would say ...
Y2 : for all k...
A: I wouldn’t...When I prove a "for all” statement, do I say for all values all at 
once?
Y2 : No, you let k in ℤ be arbitrary.
[A2: 39:30]

The student suggested using the same language (“for all”) to quantify the assumption 
of the the inductive hypothesis that had been used to quantify the inductive implica-
tion. Upon further questioning, he revised his response to suggest that the k used in 
the assumption should be an arbitrary integer. This distinction is critical because it 
avoids the logical fallacy of assuming what needs to be proved while maintaining 
a universality in k. It relies on PUG (Copi, 1954; Dawkins & Roh, 2016; Dawkins 
et al., 2020).

Theme 3: Interpreting the Language of Quantification

As we saw in the previous section, quantification requires careful use of language. 
Apparent conflations between the proposition and inductive assumption identified in 
prior literature, might be better described as difficulty in selecting precise, accurate 
language to quantify the inductive implication and the assumption of P(k) in prov-
ing this implication. In our study, students had little difficulty understanding the dif-
ference between “there exists” and “for all.” As one student explained, “you might 
think that it generalizes for all k, but we only know that it works for this one specific 
k that exists.” [N1 36:00]. However, applying that language to various components 
of MI was sometimes problematic–a problem that was exacerbated by the introduc-
tion of more ambiguous terms, such as “for some.” These issues came to a head dur-
ing a discussion of such terms in Norton’s class.

Norton invited the class to critique a quantification he had shared on a previous 
day: “If a proposition holds for some k ≥ 1 , then the proposition also holds for k + 1

.”

N: Is “some” too weak of an assumption, or is “for all” too strong of an 
assumption? How do I balance that?
X6 : I think “for some” is too weak, because if you assume “for all,” you’re not 
assuming that it’s true for every k ≥ 1 . You’re assuming that if it was true for k, 
then it would be true for k + 1.
X3 : What if you said “any” instead?
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N: What if I said “any?” I could have said, “for some k ≥ 1 ”; I could have said, 
“for all k ≥ 1 ”; or I could have said “for any k ≥ 1 .” What do we think about 
those three? We’ve got “all,” we’ve got “some”; we’ve got “any.” Do more 
than one of them work? Does only one of them work? Do none of them work?
X7 : [raises hand] Um...uh...I thought I had something, but I don’t. So, never-
mind.
[X5 raises hand]
N: I want to come back to X5 in a minute, but I want to get more people into 
the conversation.
[long pause with silence, about 10 seconds, then one more student raises hand]
N: I’m going to make people vote.
X3 : We’re going to vote?
N: Yeah, this is proof by democracy.
[N3 1:01:25]

Norton drew a chart on the board, laying out three terms: “for some,” “for any,” and 
“for all,” and asked students to vote on whether each was “too weak,” “too strong,” 
or “right on.” Student responses are illustrated in Fig. 7. We can discern a few gen-
eral patterns from their votes. Most notably, all student responses aligned with the 
idea that “for some” is the weakest quantification, and “for all” is the strongest, 
with “for any” somewhere in between. Although students agreed about the relative 
strength of these terms, they widely varied in their interpretations of these terms’ 
absolute strength and in their determination of which term should be used in the 
given statement. For instance, 8 out of 15 students who responded saw “for any” and 
“for all” as different quantifications.

In the above transcript, X6 thought the quantification “for all” was appropriate 
because it was conditioned by the “if” statement. However, we reiterate that such 
language moves the quantification inside the implication:

Another student thought “for some” was sufficient because, for them, it referred to a 
fixed but arbitrary value. Thus, we find two issues with which students must contend 
in adopting language for quantification: discerning the language used to universally 
quantify the inductive assumption from that used to universally quantify the impli-
cation (as noted before), and interpreting terms with some agreed upon convention 
(cf., Lew & Mejía-Ramos, 2019).

[

(∀k ≥ 1)P(k)

]

→ P(k + 1).

Fig. 7   Responses to Norton’s class poll on quantification
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Themes 4 & 5: Need for Distinction between k and n in Supporting the Language 
of Quantification

When introducing formal MI, many textbooks use two variables, n and k (e.g., 
Hammock, 2018). Although the shift from n to k may seem arbitrary to students, 
we have already seen how it might address ambiguities in the language of quantifi-
cation. Specifically, k plays the role of a “fixed but arbitrary” value of n that leads 
to universal quantification by way of PUG. In addition to the intellectual need for 
the shift from QI to MI, we found in both classes the intellectual need for a shift 
in the language of quantification (Theme 4). A shift in notation, from n to k, might 
satisfy this need (Theme 5).

Arnold introduced the variable k during the second lesson on induction, while 
listing the two components of a formal inductive proof: (1) P(1) is true; and,  (2) 
P(k) → P(k + 1) . She motivated the need for k in the following way:

A: Now, the reason I use a k here is because, if you notice, we use this impli-
cation over and over and over again, for very specific values of k. When we 
wrote our original outline here, we needed it to show P(1) implies P(2). We 
also needed to show that P(2) implies P(3). So notice that k is actually varying, 
because I’m going to be using this implication over and over and over and over 
again. Every time I want to recover the next value of n, I use this implication. I 
take what I already knew to be true in the previous case to recover the case that 
I’m looking at. So the question is, if I’m going to use this k like this, what is k? 
So, in other words, for which k must this be true?
[A2 36:30]

She then asked students to discuss the issue at their tables. As the students regathered 
for a whole-class discussion, one said she was confused as to why they were using k 
instead of n. When the teacher explained it allowed them to specify fixed but arbitrary 
values of n, the student responded, “I just thought we were using n and k, like they were 
two different things.” This brief episode indicates that students might not understand 
how k is being used to formally quantify the inductive assumption. Likewise, in Nor-
ton’s class, students questioned the role of k in quantification, despite his explanation.

N: So, X3 is saying that we need two things. We need to know that it works for 
1. Check, we’re done with that. And she’s saying that we also need to know 
that working for n, implies that it works for n + 1.
X8 : For all n.
N: Yeah, for all n, if it works for n, then it works for n + 1 . Thank you. The “for 
all” is really important there, as we just saw...Now, I’m not going to get really 
picky about this, but some people will want you to change the letter here, 
because with n we are talking about a general statement that is supposed to 
work for all n, and I might switch it to k to for the step that X3 was just talking 
about, because, I might want to say, OK, I’m just talking about some arbitrary 
value. I’m not talking about all natural numbers any more. So, I’m not really 
picky about that, but some people would say what you would show is for all 
k, for any k, 8k − 3k implies 8k+1 − 3k+1...If one is divisible by 5, the other is 
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divisible by 5. That’s what we need to do. So, do we have any ideas about how 
to do that? We’ve already got the first part, but can we show working for the 
kth case would imply working for k + 1 th case, for any k? If we can do that, X3 
is saying we’d be done. Do you have an idea X5?
X5 : I don’t have an idea, but I do have a question.
N: Yeah.
X5 : The “for all” part, do we just kind of assume that ...um, just take that for 
granted?
[N1 52:00]

X5 ’s question indicates a tension between the quantification of the inductive implica-
tion and the language used to quantify the inductive assumption– a tension that the 
introduction of n = k might resolve, through PUG. Namely, adopting k as a fixed but 
arbitrary value of n, assuming P(n) for n = k (not for all values of n), and proving 
that P(k + 1) follows, is sufficient for proving the universally quantified implication. 
Instead of discussing this distinct role of k, the instructors had treated the introduc-
tion of k as a shift in notation when moving from the proposition (quantified by n) to 
the inductive implication (quantified by k). To students, the introduction of k seemed 
pedantic.

Conclusions

Our study was driven by a desire to understand the challenges of proof by MI that 
might persist, even in response to research-based instruction. Prior literature has 
promoted QI as a particularly promising approach to formal MI, but one that leaves 
a gap (Harel, 2001). In our own prior work, we investigated the gap through clinical 
interviews with individual students, using a Piagetian framework to test Dubinsky’s 
(1991) conjecture about the role of logical implication (held as an action or object) 
in mastering proof by MI (Arnold & Norton, 2017; Norton & Arnold, 2017, 2019). 
The present study took a whole-class approach to investigate how students might 
experience and address the gap within a research-based instructional setting. Our 
findings provide clearer insights into the gap, why it persists, and how we might fur-
ther modify instruction to address it.

Instruction on MI often highlights the role of recursion, using metaphors like 
climbing stairs or knocking down dominoes (Ron & Dreyfus, 2004), but in line 
with prior research, we contend that students readily engage in recursive reasoning 
even before instruction on proofs and proving (Smith, 2002). Although we did use 
metaphors in our classes (e.g., MI as “an engine”), our research-based instructional 
approach featured QI and inquiry about the roles of various components of MI (e.g., 
the base case and the inductive implication; see Table 1). In this context, students 
not only readily engaged in recursive reasoning, they also experienced an intellec-
tual need to generalize QI arguments so that the logic “repeats itself.”

Prior literature has attributed students’ struggles in formalizing inductive argu-
ments to a conflation between the inductive assumption and the proposition itself 
(e.g., Movshovitz-Hadar, 1993). Indeed, we found several cases where students 
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appeared to do just that. However, this ostensible conflation is not something that 
students generally experience. Students do make distinctions between the proposi-
tion and the inductive assumption, and they attempt to articulate those distinctions 
in various ways. Therefore, students seem to experience the cognitive gap, not as a 
conflation, but rather as an ambiguity in language, especially related to quantifying 
the inductive implication and the inductive assumption. Here, we support and elabo-
rate on this main finding with a discussion of the five themes that arose from our 
study. Then, we consider the collective implications of these themes for instructional 
practice.

Discussion of Themes

As illustrated in Fig. 4, the themes surrounding the apparent conflation between the 
inductive assumption and the original proposition emanate in two directions from 
the cognitive gap. In addressing the gap, students begin to establish an intellectual 
need for–and language that supports–a quantitative distinction between the inductive 
assumption and the assumption of the proposition. Ultimately, the intellectual need 
for this distinction should justify the special role that the new variable k plays in 
proof by MI.

When engaged in QI, students in our study experienced an intellectual need 
to generalize QI arguments so that those arguments would continue indefinitely 
(Theme 1). Buttressing this need, the instructors promoted MI as a labor-saving 
device, sometimes using the metaphor of an engine that would do work for them 
once started. While students accepted MI as a method that would satisfy their intel-
lectual need, some students were also satisfied by less rigorous arguments. For 
example, students might rely on a kind of “method of descent” (cf. Ernest, 1982) 
through which an arbitrary nth case might be reduced to smaller and smaller cases 
through some unprescribed limiting process.

When students attempted formal MI, the issue of quantification arose quickly. 
Although many of their spoken and written quantifications of the inductive hypoth-
esis ostensibly assumed the proposition, students held distinctions between the prop-
osition and their assumptions (Theme 2). They sometimes used “if” and “such that” 
as tentative quantifiers, arguing that such terms restrict their assumptions to cases in 
which the inductive hypothesis is known to be true. This issue was especially preva-
lent as students attempted to shift quantification from the statement of the inductive 
implication to its proof. Whereas the former requires a universal quantifier, the lat-
ter should be assumed for a fixed but arbitrary case. The connection between these 
two quantifications relies on PUG (Copi, 1954; Dawkins & Roh, 2016), a principle 
rarely discussed in literature on proof by MI.

Students required new language to support the distinctions they were begin-
ning to make between quantification of the proposition, inductive implication, and 
the inductive assumption (Theme 3). The issue of utilizing appropriate language 
to express quantification was further exacerbated by interpersonal ambiguity in 
use of terms like “for any” and “for some.” This finding is remarkably similar to 
the finding of Lew and Mejía-Ramos’ (2019) that students use quantifying terms 
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unconventionally, which often leads to over/under-quantification. However, even 
with ambiguities resolved and conventional uses of terms established, one critical 
language-related issue remains–the aforementioned shift in quantifying the induc-
tive implication and the inductive assumption used to prove it.

The role of k as a fixed but arbitrary quantity, distinct from n, was mentioned 
in both classrooms, but students did not demonstrate an intellectual need for it to 
support the language of quantification (Themes 4 & 5). In fact, Norton permitted 
his students to ignore the shift in notation (from n to k) altogether. Teachers did not 
highlight how k may be used to emphasize that in proving the inductive implication, 
the inductive hypothesis is assumed for a single value of n, not for all n. Further-
more, the need for k might have arisen if the instructors had initiated discussions of 
PUG and the dependence of MI on that principle, particularly in proving the induc-
tive implication. Students typically rely on PUG when proving any “for all” state-
ment, but a proof by MI does not follow this standard format. We elaborate on this 
distinction in the next section when we consider directions for future research.

Focusing on the Link Between PUG and MI in Future Research

Our study affirms the instructional value of approaching MI through QI, which 
seems to induce an intellectual need for generalizing and continuing arguments. 
Additionally, findings from our study promote productive classroom discussions 
of the components of MI (see Table  1), their quantification, and the meanings 
of related terms (see Fig.  7). The instructors adopted these approaches in their 
own classrooms, which helped them home in on the gap that remains. This gap 
persisted in the nebulous distinction between the quantification of the induc-
tive implication and the quantification of its assumption when proving it. It is 
important to note that despite differences in instruction, students in both classes 
exhibited similar difficulties. Thus, beyond our own research-based instructional 
approaches, we recommend that discussions of MI also include explicit discus-
sions of PUG. These discussions could be facilitated by the distinction Dawkins 
and Roh (2020a, b) made between the role and the value of a variable. Although n 
and k might carry the same values, they serve different roles in proof by MI.

Prior to instruction on MI, students become accustomed to proving universally 
quantified statements via PUG. When proving a statement of the form “for all 
n ∈ ℕ , P(n) is true” without MI, they begin their proof with “let n ∈ ℕ be arbi-
trary.” Then, they give a general argument for why P(n) is true for this arbitrary 
n. In particular, n is fixed throughout the entire proof. A proof by MI of the same 
statement, however, does not apply PUG to the variable n in the usual way that 
students might anticipate. Not only does the proof not begin with the language 
“let n ∈ ℕ be arbitrary,” but n actually varies throughout the proof. In the base 
case, we set n = 1 . Then, utilizing PUG, we fix n to be an arbitrary value k to 
demonstrate the inductive implication holds for all n. The proof of the induc-
tive implication via PUG ultimately sits within a larger proof (like a lemma) that 
depends on the principle of MI.
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The variation of n throughout a proof by MI can often lead students to errone-
ously conclude that the corresponding metaphorical “ladder” climbed is infinitely 
long. MI actually demonstrates that given a ladder, any specified rung can be 
reached; the position reached is finite. For example, students may erroneously try 
to prove by MI that the intersection of infinitely many nested, nonempty sets is 
nonempty by inducting on the number of sets that are intersected. They contend 
that such a proof establishes the intersection of infinitely many sets as nonempty. 
However, they have only demonstrated that for any specified finite collection of 
nested sets, the intersection is nonempty.

Students’ familiarity with proofs that utilize PUG suggests an alternative struc-
ture for writing proofs by MI. Metaphorically, this style would begin by specify-
ing a ladder with a fixed, but arbitrary number of rungs n. Then, the proof would 
demonstrate that the top rung can be reached. Rather than utilizing the variable 
k only during the proof of the inductive implication, k would be used throughout 
to represent the intermediate rung position of the climber. In this way, n remains 
fixed and k plays a role analogous to an indexing variable of a sum, e.g., 

∑n

k=1
a
k
 , 

stepping from the base case up to n. The alternative proof might be written as 
follows:

Proof  Let n ∈ ℕ be arbitrary.
Base case: Let k = 1 . Demonstrate P(1) is true.
Inductive Implication: Fix arbitrary k ∈ ℤ such that 1 ≤ k < n . Assume P(k) is 

true. Show P(k + 1).
Thus, P(n) must be true. 	�  ◻

Ultimately, the fact that P(n) is true for all n ∈ ℕ follows as usual by PUG.

Summary

Our study built on prior literature by designing instruction informed by it, particu-
larly the use of QI (Avital & Libeskind, 1978; Harel, 2001). Furthermore, we coded 
student responses based on factors identified in prior research that might influence 
students’ understanding of MI (Baker, 1996; Davis et  al, 2009; Dubinsky,  1986, 
1990; Ernest, 1984; Harel, 2001; Movshovitz-Hadar, 1993; Palla et al., 2012; Ron & 
Dreyfus, 2004; Stylianides et al., 2007). Through that coding process and the themes 
that arose from it, we were able to identify more nuanced aspects of students’ strug-
gles. At the same time, we characterized factors that seem to play a lesser or different 
role, such as questions about students’ abilities to engage in recursive reasoning and 
the inference that students conflate the proposition with the inductive assumption. In 
the end, our analysis of students’ reasoning brought us to an unexpected conclusion 
regarding PUG (Copi, 1954). Although we had considered the critical role students’ 
understanding of logical implication would play in the understanding of MI (Arnold 
& Norton, 2017; Norton & Arnold, 2017, 2019), and although prior literature has 
anticipated the role of PUG in other forms of logical reasoning (Dawkins & Roh, 
2016), we had not considered the special role PUG would play (via k) in students’ 
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understanding of MI. Our study implies that instruction should explicitly address 
that role, through classroom discussion, to bridge the gap between QI and MI.
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