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As has been well-documented, the epistemological obstacles associated with teaching and 
learning mathematical proofs persist despite research-based instruction. We describe the 
ongoing design process of our NSF-funded project aimed at understanding and addressing those 
obstacles in introductory proofs courses, using proof by mathematical induction as an anchor. 
Our process is framed by two cycles of designed-based research. The first cycle corresponds to 
designing and implementing research-based instruction on mathematical induction, whereas the 
second cycle broadens the scope of our research to other introductory proofs topics. This paper 
reports on the outcomes of the first cycle, the transition between the first and second cycles, and 
the project's end products. 
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There is a wide recognition among researchers and practitioners that proofs and proving are 
of vital importance in students’ learning of mathematics at all levels of education (NCTM, 2000). 
At the same time, a growing body of research has identified numerous challenges associated with 
teaching and learning proofs (e.g., Brousseau, 1997; Brown, 2008; Dawkins & Weber, 2017; 
Hanna & de Villiers, 2012; Harel & Sowder, 2007; Shipman, 2016; Sierpińska, 1987; 
Stylianides, 2014, 2016). Sierpińska (1987) and Brousseau (1997) have conceptualized the 
necessary challenges in students’ mathematical development in terms of epistemological 
obstacles (EOs). EOs in teaching and learning mathematical proofs are the primary focus of this 
project. 

 Here, we frame EOs as cognitive challenges that persist even in response to research-based 
instruction. Thus, EOs can be experienced both by students and teachers during instructional 
interactions. When instructors experience EOs, there is a tension between the desire to 
circumvent them and the need to provide students with opportunities to develop logical 
structures that are fundamental for proving. However, as it has been pointed out by Brousseau 
(2002), addressing an obstacle head on is essential for overcoming it because “it will resist being 
rejected and, as it must, it will try to adapt itself locally, to modify itself at the least cost, to 
optimize itself in a reduced field, following a well-known process of accommodation” (p. 85). 
As such, because EOs are persistent, students must internalize an intellectual need for the 
underlying concepts to motivate, persevere, and successfully overcome the obstacles.  

Therefore, the overarching goals of our project are to 1) identify the EOs associated with 
teaching and learning mathematical proofs and 2) design instructional tools for evoking and 
addressing these obstacles. The research questions guiding our study are as follows: 

1. What are the EOs associated with teaching and learning mathematical proofs? 
2. What instructional tools are suitable for evoking and addressing these EOs? 



In answering these questions, we employ a cyclic design-based research approach (Anderson 
& Shattuck, 2012; Bakker & Van Eerde, 2015; Cobb et al., 2003; Gravemeijer & Cobb, 2006). 
The first cycle was conducted in Spring 2018, when the third and fourth authors implemented 
research-based instruction on proof by mathematical induction (PMI) in their classrooms. The 
results are presented in Norton et al. (2022). We use PMI as an anchor for broadening the scope 
of our research. During the second cycle, the same teachers will use the designed instructional 
materials in their respective Introduction to Proofs classes – one in Fall 2022 and one in Spring 
2023. This paper reports on the outcomes of the first cycle, the transition between the first and 
second cycles, and the project’s end products (see Figure 1). 

 
Figure 1: Two cycles and the end products of the project. 

Literature Review and Theoretical Framework 
Prior research has documented EOs on a variety of concepts studied in proofs-based courses. 

The following challenges have been associated with students’ mastery of PMI: understanding the 
role of the base case (Baker, 1996; Ernst, 1984; Ron & Dreyfus, 2004; Stylianides et al., 2007), 
treating logical implication as an invariant relationship (Dubinsky, 1986, 1991; Norton & 
Arnold, 2017, 2019), discerning between the truth of the conjecture and the inductive hypothesis 
(Movshovirz-Hadar, 1993), attending to (hidden) quantifiers (Shipman, 2016) and the proper use 
of related language (Ernst, 1984; Movshovitz-Hadar, 1993; Stylianides et al., 2007), and having 
domain-specific knowledge particular to the conjecture (Dubinsky, 1991). Many of these 
challenges, especially quantification, extend well beyond PMI (Dawkins & Roh, 2020; Lew & 
Mejía-Ramos, 2019). 

Instructional Approaches for Addressing EOs 
Awareness of EOs should inform the design of instructional approaches to introductory 

proofs topics. Traditional instructional approaches may be insufficient in addressing these 



obstacles, necessitating the development of alternative instructional techniques that support 
student learning.  

In the case of PMI, traditional instruction introduces the technique as a three-step procedure: 
(1) prove the base case, (2) assume the inductive hypothesis, and (3) prove the inductive step. 
However, this procedure can inadvertently cause learners to bypass the logic of PMI, ultimately 
circumventing experiencing necessary challenges (Harel, 2002). 

An alternative approach that combines procedure with logical structure was first suggested 
by Avital and Libeskind (1978) and then further elaborated by Harel (2002) as “quasi-induction.” 
A student who uses this method shows that 𝑃(1) is true and that 𝑃(1) → 𝑃(2), 𝑃(2) → 𝑃(3), 
and so on. This leads to the plausible conclusion that eventually 𝑃(𝑛	– 1) → 𝑃(𝑛). Although 
formal PMI may be considered to be a natural generalization of quasi-induction, there is a 
significant cognitive gap between the two (Harel, 2002). Norton et al. (2022) implemented 
research-based instruction to address and better understand this gap. 

Design-Based Research 
Design-based research (DBR) is an interventionist approach aimed at weaving together 

educational practice and theory (Bakker & Van Eerde, 2015). DBR is typically used to develop 
educational materials and accompanying theoretical insights into how these materials can be 
used in practice.  

Gravemeijer and Cobb (2006) framed DBR in terms of three interrelated phases: 1) preparing 
for the experiment, 2) experimenting in the classroom, and 3) conducting retrospective analysis. 
These phases occur in repeated cycles in which the last phase of the previous cycle informs the 
first phase of the following cycle, and so on. During the first phase, researchers scrutinize the 
problem of interest, synthesize the available research literature, curricula, and textbooks, and 
articulate the learning objectives and theoretical intents of the experiment. In the second phase, 
the experiment is conducted using the designed instructional materials as a guideline for teaching 
and observing. Data collection and preliminary data analysis also takes place during this phase. 
Once the experiment is complete and the data has been collected, the retrospective analysis 
begins in phase three. The comprehensive data sets must be analyzed systematically while 
simultaneously documenting the grounds for the subsequent cycle. As such, the retrospective 
analysis should examine the utility of the designed instructional materials and spark ideas for 
how they might be refined and complemented.  

Cycle 1 (Spring 2018) 
As aforementioned, prior research indicates a number of EOs experienced by introductory 

proofs students and suggests fruitful instructional approaches for supporting students in 
overcoming these obstacles. In particular, the method of quasi-induction (QI) has been validated 
as accessible to students and beneficial for their mastery of PMI (Cusi & Malara, 2008; Harel, 
2002). However, a cognitive gap remains in transitioning between QI and formal PMI. 
Therefore, Cycle 1 centered around understanding the factors contributing to this gap and 
designing instructional materials that help students address it. 

Preparing for the Experiment 
Informed by prior research, we designed a set of scenarios about an unspecified proposition 

𝑃(𝑛) (Table 1). For each scenario, students are tasked to decide whether the given information is 
sufficient to prove that 𝑃(𝑛) is true for all positive integers 𝑛. The tasks are independent of 
mathematical content. They are built from students’ conceptualizations of logical implication, 



and they aim to bridge the gap between QI and PMI. We first validated these tasks in Arnold and 
Norton (2017) and Norton and Arnold (2017) via clinical interviews with students from an 
introductory proofs course, and we further refined them in a follow-up study (Norton & Arnold, 
2019). 

 
Table 1. Cycle 1 tasks.  

Suppose 𝑃(𝑛) is a statement about a positive integer 𝑛, and we want to prove the 
claim that 𝑃(𝑛) is true for all positive integers 𝑛. For each scenario, decide 
whether the given information is enough to prove 𝑃(𝑛) for all positive integers 𝑛. 

A 𝑃(1) is true; for all integers 𝑘 ≥ 1, 𝑃(𝑘) is true. 

B 𝑃(1) is true; there is an integer 𝑘 ≥ 1 such that 𝑃(𝑘) is true. 

C 𝑃(1) is true; there is an integer 𝑘 ≥ 1 such that 𝑃(𝑘) → 𝑃(𝑘 + 1). 

D 𝑃(1) is true; for all integers 𝑘 ≥ 1, 𝑃(𝑘) → 𝑃(𝑘 + 1). 

E For all integers 𝑘 ≥ 1, 𝑃(𝑘) → 𝑃(𝑘 + 1). 

F For all integers 𝑘 ≥ 1, 𝑃(𝑘) and 𝑃(𝑘 + 1) are true. 

G 𝑃(1) is true; for all integers 𝑘 ≥ 2, 𝑃(𝑘) → 𝑃(𝑘 + 1). 

Conducting the Experiment 
We implemented research-based instruction in two sections of Introduction to Proofs at a 

large public university in the southeastern United States. The third author used the tasks within 
an informal pre-assessment. The fourth author used them to generate class discussion. Following 
these approaches, both instructors sought to promote the inductive implication as an invariant 
relationship between the inductive assumption and the inductive step (rather than treating the 
inductive assumption and step as separate components), and to explicitly address the issues of 
quantification. All classes associated with instruction on PMI were recorded. The third author 
had three class meetings, 50 minutes each. The fourth author held three meetings, 75 minutes 
each. Recordings captured the instructors’ activity, the notes and PowerPoint slides displayed on 
the overhead projector, and students’ interactions. 

Retrospective Analysis 
We performed two rounds of retrospective analysis of classroom data. During the first round, 

we coded the data using a set of codes informed by existing literature on students’ struggles with 
PMI. They included base case (B), quantifiers (Q), inductive implication (I), domain knowledge 
(D), and conflation (C) between the inductive hypothesis, implication, or proposition. As new 
themes emerged for which we did not have an existing code, a new code was created. In this 
case, we reviewed and re-coded the prior data, using a constant comparative method (Glaser, 
1965). This iterative process repeated until the codebook stabilized. The new codes included 



reducing the problem to computational setting (Rc), “why 𝑘, not	𝑛?” (K), effects of formal 
instruction (F), and the cognitive gap (G).1 

 We conducted the second round of analysis with an emphasis on the cognitive gap. 
Specifically, we reanalyzed the data to document how each code was related to the gap. As a 
byproduct of this analysis, two more codes emerged – intellectual need (N), and the use of 
language for communicating the intended logic (L). 

The analysis revealed five themes describing the relationships between the cognitive gap and 
other challenges, depicted in Figure 2. Students must develop an intellectual need to generalize 
the logic involved in building the quasi-inductive chain of inferences (Theme 1). However, even 
when students have an intellectual need for formal PMI, issues with quantification arise (Theme 
2). These challenges include careful quantification of the inductive implication and a shift in the 
language for quantifying the inductive assumption when proving the implication. As a 
consequence, students require new language to support the distinctions they make in quantifying 
the inductive assumption, the inductive implication, and the proposition they must prove (Theme 
3). Finally, we found that a shift in notation from 𝑛 to 𝑘 when denoting the inductive implication 
seemed unnecessary to students. Students did not demonstrate the intellectual need for it in either 
class (Theme 5), nor for the use of proper language for quantifying 𝑛 and 𝑘 (Theme 4). 

 
Figure 2. Five themes emerged from Cycle 1. 

Cycle 2 (Summer 2022-Spring 2023) 
Cycle 2 is ongoing. Its purpose is to broaden the scope of our study to the fundamental topics 

traditionally studied in introductory proofs courses, such as mathematical statements, logical 
implications and their transformations, quantifiers, and functions. 

Preparing for the Experiment 
Cycle 2 began with an advisory board meeting in June 2022. The advisory board members 

included three widely recognized experts in research on PMI, quantifiers, and logical reasoning. 
We relied on their expertise, on the previous research findings, and on the results from Cycle 1, 

 
1 A detailed description of the codes can be found in Norton et al. (2022).  



to 1) identify the EOs associated with teaching and learning proofs, and 2) design instructional 
tasks aimed at evoking, addressing, and assessing the discussed EOs. 

In particular, as one of the outcomes of Cycle 1, we found that students’ apparent treatment 
of inductive implication is closely linked with a language issue inherent in quantifying an 
implication. On the one hand, the implication 𝑃(𝑘) → 𝑃(𝑘 + 1) must be proved for all values of 
𝑘. On the other hand, the proof of the implication requires one to assume 𝑃(𝑘) is true for some 
fixed but arbitrary value of 𝑘. Ignoring the former quantification leads to an incomplete 
argument. Ignoring the latter quantification leads to circular reasoning. Similar issues with 
language in quantifying mathematical objects have been documented in prior research (Dawkins 
& Roh, 2020; Lew & Mejía-Ramos, 2019). 

To evoke and address challenges related to teaching and learning quantifiers, we designed six 
multiply quantified statements about a linear equation 𝑚𝑥 + 𝑏 = 0 (see Table 2). The statements 
exhaust all combinations of ordering explicit quantifiers and their attached variables that make 
sense geometrically. Statement 2 is the only false statement. The variety of statements will allow 
students to compare and contrast the quantifiers in a different order, and, as a result, understand 
the role of quantifiers in mathematical statements. 

 
Table 2. A sample Cycle 2 task.  

Below are six statements about real numbers m, x, and b.  
TASK 1: give a geometric interpretation to each of these statements. One of them is not 
true. Which one? Explain why this statement is false. 
TASK 2: Match the true statements with the following proofs: 

Statement Proof 

The exist real numbers m,b, and x, such that 
𝑚𝑥 + 𝑏 = 0. 

Let 𝑏 = 0,𝑚 = 1, and 𝑥 = 0. Therefore, 
𝑚𝑥 + 𝑏 = 1 ∙ 0 + 0. 

For all real numbers m,b, and x, 𝑚𝑥 + 𝑏 = 0. N/A 

There exists a real number m, such that for all 
real numbers b, there exists a real number x, 
such that  𝑚𝑥 + 𝑏 = 0. 

Let 𝑚 = 1. Then, for any real number b, 
take 𝑥 = −𝑏.	Therefore,  
𝑚𝑥 + 𝑏 = 1 ∙ (−𝑏) + 𝑏 = −𝑏 + 𝑏 = 0.  

There exists a real number m, such that for all 
real numbers x, there exists a real number b, 
such that  𝑚𝑥 + 𝑏 = 0. 

Let 𝑚 = 1. Then, for any real number x, 
take 𝑏 = −𝑥.	Therefore,  
𝑚𝑥 + 𝑏 = 1 ∙ (−𝑥) + 𝑥 = −𝑥 + 𝑥 = 0. 

There exists a real number b, and there exists 
a real number m, such that for all real 
numbers x, 𝑚𝑥 + 𝑏 = 0. 

Fix an arbitrary x. Let 𝑏 = 0. Observe that, 
when 𝑚 = 0,  
𝑚𝑥 + 𝑏 = 0 ∙ (−𝑥) + 0 = 0 + 0 = 0. 

There exists a real number b, and there exists 
a real number x, such that for all real numbers 
m, 𝑚𝑥 + 𝑏 = 0. 

Let 𝑏 = 0. Observe that, when 𝑥 = 0,  
𝑚𝑥 + 𝑏 = 𝑚 ∙ 0 + 0 = 0 + 0 = 0	for any 
real number m. 

 



Conducting the Experiment  
As in Cycle 1, the third and the fourth authors will implement research-based instruction in 

their respective Introduction to Proofs classes: one in Fall 2022 and one in Spring 2023. The 
classroom interactions pertaining to the aforementioned topics will be video and audio recorded.  

Retrospective Analysis  
We will qualitatively analyze the complex student-teacher and student-student interactions. 

The analysis will be reminiscent of the procedures we used in Cycle 1, involving the elements of 
constant comparative method (Glaser, 1965). To present the data in a comprehensive and 
feasible fashion, we will create a graph of connected codes, in which the nodes and edges will 
respectively represent the key codes that pertain to answering the research questions and the 
relationships between these codes, respectively.  

Implications and Products 
We will use the results of the first two cycles of our project to deepen our understanding of 

the EOs and disseminate research findings. Specifically, throughout the research-based 
instruction, we will collect data for a phenomenographic study to gain more nuanced insights 
into how students experience EOs during instructional interactions. In parallel with Cycle 2 data 
analysis, we will recruit instructors teaching Introduction to Proofs courses in Fall 2023 who are 
willing to participate in a week-long workshop preceding the fall semester and implement the 
proposed instruction. The workshop will be organized by the authors and will include selected 
videos of instructional interactions from Cycles 1 and 2. We will also conduct a 
phenomenographic study to see how the instructors experience the proposed EOs.  

On the basis of the data collected in Cycles 1 and 2, we will compile an online handbook 
documenting the instructional interactions surrounding the EOs. The handbook will include our 
modified instructional tasks designed for evoking these interactions, as well as video clips of 
classroom interactions from the Introduction to Proofs classes taught by the third and fourth 
authors. The handbook is intended to increase instructors’ pedagogical content knowledge on 
foundational topics of the course. In addition to serving as an instructional guide for bridging 
research and practice, the handbook will also provide instructional videos that can be shared 
directly with students.  

To bolster the broader impacts of our project, we will create a “Train-the-Trainers” style 
professional development website. This website will transform and extend the training activities 
of our workshop (organized in the summer of 2023) into professional development activities that 
can be hosted and facilitated by any university wishing to implement the instructional tools 
resulting from this project. Each activity will be accompanied by a facilitator’s guide for 
empowering and equipping members of other universities to conduct their own in-house training 
workshop for the instructors of their introductory proofs courses. 
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